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Abstract—This paper elucidates the impact of comparative
mechanisms for dynamically adapting team sizes in simulated
robot teams that must accomplish a collective construction task.
The first approach adapts team size using genotypic diversity
of team behaviors in a population of behaviors. The second
approach adapts team size as a function of behavioral success
(degree of task accomplishment). Task complexity in the collective
construction task is equated with the degree of cooperation
required between robots for task accomplishment. Task com-
plexity, and hence the most suitable team size, is not known a
priori. Results indicate that adapting team size based on genotype
diversity is beneficial for collective construction when the task
requires a low degree of cooperation. However, when a relatively
high degree of cooperation is required for task accomplishment,
then dynamically adapting team size according to genotype
diversity or behavioral efficacy yields comparable results.

Index Terms—Neuro-Evolution, Collective Construction, Team
Size Adaptation.

I. INTRODUCTION

In multi-robot systems [1], it is often beneficial to dynam-
ically adapt team size so as a suitable number of robots are
assigned to the task [2], [3]. In cooperative multi-robot tasks,
if team sizes are too small then sub-optimal task performance
or failure often results [4]. Similarly, if a team is too large
then sub-optimal task performance often results from physical
interference between robots as they try to accomplish cooper-
ative tasks [2]. Dynamic adaptation of team size is especially
important in collective behavior tasks where a required degree
of cooperation, and hence the optimal team size is not known
a priori [3], [5]. Dynamic team size refers to adapting the
number of robots (as well as behavior), during an Evolutionary
Robotics [6] (ER) simulation. An end goal of ER is to transfer
collective behaviors (and team sizes) evolved in simulation to
a counter-part team of physical robots that accomplishes the
same task in reality (outside this paper’s scope).

Dynamic team size adaptation, in an ER context, contrasts
with more conventional approaches that attempt to predeter-
mine team size given a measure of task complexity [7], [8].
One approach of ER for evolving teams to solve collective
behavior tasks, is to adapt team sizes as a function of task
complexity. However, the most appropriate (task independent)
method for adapting team sizes remains unclear. For example,
the benefits of adapting team size as a function of only geno-
type diversity (where a genotype encodes a robot’s behavior)
versus task complexity has received little research attention.

In this study, the mechanism to adapt team size according
to genotype diversity works within the Neuro-evolution for
Augmenting Topologies (NEAT) method [9]. This approach is
compared to a mechanism that adapts team size using the ef-
fectiveness of robot behaviors. This second mechanism works
within the Collective Neuro-Evolution version 2 (CONE-2)
method [10]. CONE (with which CONE-2 shares many simi-
larities) has been applied to various collective behavior tasks
[11], [12]. However, with the exception of NEAT extensions
such as HyperNEAT, applied to specific multi-agent tasks [13],
NEAT has not been applied to solve collective behavior tasks.
NEAT was selected as a team behavior evolution method,
given its speciation mechanism that maintains genotype di-
versity and protects controller innovation [14].

The efficacy of CONE-2 and NEAT for evolving team
behaviors (and suitable team sizes) was tested in a collective
construction task which required varying degrees of coopera-
tive behavior. Task performance comparisons between CONE-
2 and NEAT evolved teams were in terms of the number
of blocks connected together in a specific order to form a
larger structure. Varying degrees of cooperation were equated
with the number of robots required to connect blocks. Either
one (no cooperation), two (low cooperation), or three (high
cooperation) robots were required to build connections.

A. Research Goal

To demonstrate two comparative methods for dynamically
adapting team size that are beneficial for collective construc-
tion task performance. The task requires varying degrees of
cooperation between robots (unknown to the team a priori).
This research goal was formulated given previous ER research
results [11], [12] elucidating the difficulty of predetermining
suitable team sizes for collective (cooperative) behavior tasks.

B. Hypothesis

To test if adapting team size as function of genotype diver-
sity is comparably effective to adapting team size according
to behavioral success. For this study, a genotype encodes a
robot behavior, that the NEAT Neuro-Evolution (NE) method
evolves. This hypothesis was tested via comparing collective
construction task performance of the fittest NEAT versus
CONE-2 evolved teams, where both methods adapt team
size and behavior. This hypothesis was formulated given the
success of behaviorally heterogenous teams in cooperative
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tasks [8], [15]. In this study, genotype (controller encoding)
diversity represents behavioral diversity at the team level.

C. Motivation

Previous research has focused on adapting team sizes as a
function of task complexity (that is, controller output success)
[7], [8]. However, to date, the most appropriate methods for
dynamically adapting team sizes in any given cooperative task
remains unclear. In this case, a comparison and analysis of
behavioral encoding versus behavioral success mechanisms
for adapting team size in cooperative tasks is tested. This
comparison is conducted in context of NEAT and CONE-
2. Both NE methods have been successfully applied as NE
controller design methods in various tasks [16], [10].

NEAT is applied to evolve robot controllers and adapt
team size using its speciation mechanism [16] (section III).
In NEAT, the evolution of N controllers is represented by
the fittest controllers selected from N species. Hence, NEAT
controllers (genotypes) in evolving populations (species) only
become as complex as the task requires, where team size
equals the number of species being evolved.

CONE-2 is applied to evolve controllers and adapt team size
via adding a new genotype population (from which individual
robot controllers are evolved) whenever a cooperative task
cannot be accomplished by the current number of robots.
In CONE-2, the evolution of n controllers is represented by
n genotype populations (section II). This results in a new
robot being added to the environment. The motivation for
this approach is that a CONE-2 team only becomes as large
as required (controller complexity is fixed). Thus, CONE-2
team size is regulated by the degree of cooperation required
to accomplish the collective construction task.

II. CONE-2: COLLECTIVE NEURO-EVOLUTION 2

CONE-2 is a cooperative co-evolution NE method that
extends CONE [11]. CONE-2’s contribution is that it in-
creases the number of populations (from which controllers are
evolved) as a function of task complexity. CONE-2 increases
the number of controllers until a team size suitable for task
accomplishment is found [10]. One controller (fully connected
fixed topology feed-forward ANN with one hidden layer) is
evolved from each population. This research uses a simplified
version of CONE-2 where genotypes directly encode complete
controllers. That is, each genotype is a vector of floating point
values that represents all input to hidden layer and hidden layer
to output connection weights in an ANN.

CONE-2 starts with one population (P0), consisting of u
genotypes (controllers). Each genotype encodes 250 connec-
tion weights (220 input to hidden layer weights plus 30 hidden
layer to output connection weights, as depicted in figure 3,
left). Each genotype’s gene is initialized to a random value in
the range: [-1.0, 1.0]. The controller evolution process is the
same as Conventional Neuro-Evolution (CNE) [17].

A. Team Representation and Size Adaptation:

In CONE-2, one population represents each robot in the
environment. That is, each robot’s controller is evolved from

a separate population. For example, a team size of N=3 will
use three populations to evolve three different controllers.
Thus, CONE-2 evolved teams are heterogenous. N populations
(where, N ≥ 2) of controllers are cooperatively co-adapted
based on how well a task is cooperatively solved by controllers
selected from each population. An example of CONE-2 using
three controllers (populations), and adding a new population
is presented in figure 1. The process for evaluating controllers
evolved from N populations is the same as used for Multi-
Agent CNE described by Potter [18] and Nitschke [19].

CONE-2 team size adaptation is depicted in figure 1 (right).

1) Adding Population Pn+1 (n ≥ 0): If one robot (ANNi)
or two robots (ANNi and ANNj) are gripping a block
in the construction zone, but cannot connect the block
to others1, then a help signal is emitted. If there is a
second (in the case of ANNi only) or third (in the case
of ANNi and ANNj) robot in the environment, then
ANNi, or ANNi and ANNj wait Z iterations (table
III). If another robot does not grip the block in this time,
the current generation is stopped and a new population
Pn+1 is created. The next generation then starts, and a
new controller ANNk is evolved from population Pn+1.

2) Population Initialization: Pn+1 is initialized with u
genotypes. For each new population (Pn+1), u is same
as for Pn. To encourage Pn+1 to evolve a controller
from a beneficial part of the solution space, genotypes
of Pn+1 are initialized based on one of the existing
populations. This is Pm, from which ANNm is evolved,
where ANNm is the controller (robot) that emitted
the help signal. Each genotype in Pn+1 is initialized
with the genotypes of an existing population. Burst
mutation with a Cauchy distribution [20] is applied to
each gene of each genotype in Pn+1 with probability
p (table III). This Pn+1 initialization procedure ensures
that the new controller ANNn+1 is not too dissimilar
to the current team of N controllers. Also, the time
taken for ANNn+1 to evolve a beneficial behavior
is minimized since ANNn+1 is based on an already
functional controller.

B. CONE-2 Genetic Operators

• Recombination: Only occurs within populations (for each
population). After all genotypes (in all populations) have
been assigned a fitness and ranked, genotypes are re-
combined. For a given population, each genotype in the
population’s elite portion (table III) is systematically
selected and paired with another genotype (randomly
selected from the elite portion). Three-point crossover
[21] is applied to each parent pair. Enough child geno-
types are produced to replace the current population. This
procedure is repeated for every population.

• Mutation: Burst mutation [20] is then applied to each
genotype’s gene with probability p (table III).

1At most three robots are needed to connect one block to another (table I).
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Fig. 1. CONE-2 Example (Left): Three ANN controllers are derived from three Genotype Populations (GP) and evaluated collectively. Recombination only
occurs within populations. Team Size Adaptation (Right): Adding a genotype (controller) population (GP) and thus a new robot to the environment.

III. NEAT: NEURO-EVOLUTION OF AUGMENTED

TOPOLOGIES

NEAT is a competitive co-evolution NE method that uses
mechanisms for historical gene marking, speciation, and com-
plexification [9], [14], [16] in its adaptation process.

Complexification is the incremental growth from minimal
ANN controller topology. NEAT begins with one homogenous
population of simple controllers (no hidden nodes) and adapts
connection weights and topology as a function of task com-
plexity. NEAT biases the search towards minimal dimensional
spaces and only increases search space dimensionality (adding
controller structure) if the task requires it.

Speciation in NEAT calculates if two controllers will be in
the same or a new species (according to a genotype compati-
bility threshold) after controllers have been recombined and
mutated every generation. Speciating the population means
controllers will only compete within their given species. This
protects new innovations in controller topology adaptation.

Historical gene markings allow NEAT to add new structure
and recombine controllers with differing topologies, since gene
markings are evidence of controller homology.

A. Team Representation and Size Adaptation:

The current fittest controller is selected from each of N
species. NEAT evolves teams of N robots from N populations
(species). Hence, NEAT teams are heterogenous, since each
species evolves a different controller topology.

NEAT uses its speciation [16] mechanism to adapt team
size. When a new species is added to NEAT’s genotype
population (resulting from sufficient genotype diversity), then
a new robot (controller) is added to the environment.

B. NEAT: Genetic Operators

• Mutation: NEAT mutation adapts both connection
weights and controller topology. To adapt controller
weights, this application of NEAT uses burst mutation

[20] to change each gene in each genotype with a
given probability (table III). NEAT controller topology
adaptation is the basis of complexification and works
via adding genes to genotypes. New genes are new
connections or controller nodes represented by a mutated
genotype. These mutations are simultaneously applied to
each genotype with a given probability. Added connection
weights connect two previously unconnected nodes in a
mutated controller. When a new node c is added, the
existing connection between two existing nodes a and b
is disabled. A new connection between nodes a and c
(weight value = 1.0) is initialized. A second connection
is initialized between node c and b, with the same weight
of the previously connected nodes a and b. When a new
gene is added, the new gene is assigned an incremented
global innovation number.

• Recombination: Since NEAT tracks the historical origin
of all genes using innovation numbers, this means that
only homologous genes in two given controllers will be
recombined. That is, NEAT only recombines genotypes
(controllers) with ancestral genes in common. Matching
genes are randomly selected for child genotypes. Disjoint
and excess genes are inherited from the fitter parent, or
at random in the case of equal fitness.

IV. COLLECTIVE CONSTRUCTION TASK AND

EXPERIMENTS

The collective construction task requires a robot team to
gather blocks (of type A, B, or C) and cooperatively build a
pre-specified structure from the blocks in a construction zone.
Task complexity is equated with the degree of cooperation
(number of robots) required to connect blocks. Construction
rules (table II) dictate how different block types connect to-
gether according to a construction schema (table I). Construc-
tion rules regulate the difficulty of the construction process
via requiring varying degrees of cooperation. For example,
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TABLE I
COLLECTIVE CONSTRUCTION TASK: BLOCK TYPE DISTRIBUTION FOR 10 CONSTRUCTION SCHEMAS.

Block Type Distribution and Construction Schema
Schema Number A Blocks B Blocks C Blocks Construction Schema Robots Required
1 5 5 0 A B A B A B A B A B 1
2 4 5 1 A B A B A B A B C B 2
3 3 5 2 A B A B A B C B C B 2
4 2 5 3 A B A B C B C B C B 2
5 1 5 4 A B C B C B C B C B 2
6 0 5 5 C B C B C B C B C B 2
7 0 6 4 C B C B C B C B B B 3
8 0 7 3 C B C B C B B B B B 3
9 0 8 2 C B C B B B B B B B 3
10 0 9 1 C B B B B B B B B B 3
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Fig. 2. Example simulation environment (Left): With three robots, five type A blocks (green), three type B blocks (blue), and two type C blocks (gold).
Construction schema example (center): Six of 10 blocks are connected in the correct sequence (given by construction schema 7: table I). Three robots are
cooperatively connecting a type C block to the partially built object. Robot (Right): Visualization of the robot’s sensor quadrants, gripper range and sensor
range. Robot sensor quadrants: SQ-1, SQ-2, SQ-3, SQ-4. Block demand sensors: SI-12, SI-13, SI-14 are not depicted since they work in all four quadrants.

the construction schema in figure 2 (center) mandates that the
third and second last blocks in the construction sequence are
type B blocks. Making a type B to type B block connection
requires three robots to cooperate (table II). In this collective
construction task, low and high level cooperation refers to two
and three robots simultaneously gripping and pushing a block
to connect to another block, respectively. Team fitness is the
number of blocks connected during its lifetime.

Experiments test n (initially n = 1), robots in a bounded two
dimensional continuous environment containing a distribution
of type A, B, and C blocks (figure 2, left). The environment
also contains a construction zone, where N gathered blocks
are delivered and connected into a single object. Figure 2
(left, center, right) present an example of the simulation
environment, a structure being built according to a construction
schema, and a depiction of the robot’s sensor quadrants and
gripper range, respectively.

A. Fitness Evaluation

To drive the selection process of NEAT and CONE-2, the
fitness function accounted for the distance and type of blocks
moved by robots, even though the ultimate evaluation of team
behavior was the number of blocks connected.

A robot’s fitness was calculated based on the time taken (T)
for it to move block i of a given type (BTi) from an initial

TABLE II
BLOCK CONNECTION CONSTRUCTION RULES

Construction Rules
Construction Schema A Connects: B Connects: B Connects:
[1, 10] (table I) B C B
Robots Required 1 2 3

position in the environment, and to connect it to other blocks
in the construction zone (Vη in equation 1).

Vη =
1

T
∗BTi (1)

Block types A, B, and C yield different fitness values (table
III) for being moved and connected in the construction zone.
The varying fitness rewards for different block types reflect the
degree of difficulty (cooperation) to connect given block types.
If n robots cooperatively connected a block, then each of the n
received the same fitness (Vη). For both CONE-2 and NEAT,
fitness was assigned to each genotype representing each of the
n robot controllers.

B. Simulation

An experiment applies CONE-2 or NEAT to evolve team
behavior for 500 generations. A generation comprises three
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TABLE III
SIMULATION AND NEURO-EVOLUTION PARAMETERS: COLLECTIVE CONSTRUCTION TASK.

Simulation and Neuro-Evolution Parameters
Simulation runs (1 experiment) / Initial number of robots (Genotype populations) 10 (CONE-2 / NEAT) / 1 (CONE-2 / NEAT)
Maximum robot sensor / grip range 0.04
Robot size (diameter) / Maximum movement per iteration 0.02 / 0.01
Initial robot positions Random (Excluding construction zone)
Simulation environment / Width x height Continuous / 1.0 x 1.0
Construction zone size (Diameter) / Block size (width / height) 0.16 / 0.012 (Type A / B / C)
Block Type A / B / C Fitness reward 2 / 5 / 10
Generations / Epochs / Iterations per epoch (Robot lifetime) 500 / 3 (CONE-2 / NEAT) / 4000
Mutation (per gene) probability (p) / Mutation range 0.05 / [-1.0, +1.0]
Population elite portion 20%
Initial weight (gene) range [-1.0, +1.0]
Genotype length (Connection weights) 250 (CONE-2) / Variable (NEAT)
Initial number of populations / Genotypes per population 1 (CONE-2 / NEAT) / 100 (CONE-2 / NEAT)
Wait (for cooperation) Z iterations 50
Sensory Input / Motor Output Nodes 22 / 3 (CONE-2 / NEAT)
Initial Sensory Input Nodes / Motor Output Nodes 4 / 3 (NEAT)
Survival threshold / Add node mutation probability 20% (NEAT)
Disjoint Coefficient / Excess Coefficient 2.0 (NEAT)
Weight Difference Coefficient 1.0 (NEAT)
Compatibility Threshold / Modifier 6.0 / 0.3 (NEAT)
Interspecies mutation rate / Recurrent link probability 5% (NEAT)

epochs. One epoch is 4000 simulation iterations and represents
a task scenario that tests different robot starting positions,
orientations, and block locations in an environment. CONE-
2 and NEAT experiments use the same number of genotype
evaluations (for each experiment) to ensure a fair comparison.
The fitness of CONE-2 and NEAT teams is an average
calculated over 20 simulation runs of a given experiment.

Table III presents the simulation parameter settings. These
were determined experimentally. Minor value changes pro-
duced similar results for both CONE-2 and NEAT evolved
teams, and have functioned in related NE controller evolution
experiments [12]. NEAT parameters not detailed in table III
were given default values specified by Stanley [16].

V. ROBOT CONTROLLERS (CONE-2 AND NEAT)

A. Detection Sensors

A robot’s sensory Field of View (FOV) is split into north,
south, east and west sensor quadrants (SQ-0, SQ-1, SQ-2, and
SQ-3, respectively, in figure 2, right).

A CONE-2 robot has 12 block detection ([SI-0, SI-11]),
three block demand ([S-12, S-14]), and four robot detection
([S-15, SI-16, S-17]) sensors (figure 3, left). Sensor values are
normalized to the range [0.0, 1.0].

1) Block Detection Sensors: Are constantly active for a
robot’s lifetime. Sensor q returns the closest block type in
quadrant q, divided by the squared distance to this robot.

2) Robot Detection Sensors: Prevents collisions and enable
cooperation. Sensor q returns the closest robot in sensor
quadrant q, divided by the squared distance to this robot.

3) Block Demand Sensors: Are constantly active for a
robot’s lifetime. Each simulation iteration the construction
zone broadcasts a signal that is received by each robot’s block
demand sensors. This signal indicates the block type with the
highest demand (next required in the construction sequence).

A 1.0 sensor value indicates the highest demand, 0.5 indicates
second highest demand, and 0.0 indicates no demand.

For example, block demand sensor S-12 receives a demand
signal equal to 1.0 if block type A is the next type required
in the construction sequence. Sensor S-13 receives a demand
signal value of 0.5 if a type B block is the next type required
after block type A. Sensor S-14 receives a signal of 0.0 if a
type C block is no longer required. If block types B and C
are both required after type A (for example, where type B and
C blocks can be connected to either side of a type A block),
then sensors S-13 and S-14 will receive a 0.5 signal value.

B. Movement Actuators

Two wheel motors control a robot’s heading at a constant
speed (table III). Wheel motors (MO-0 and MO-1 in figure 3)
must be explicitly activated. Movement is calculated in terms
of real valued vectors (dx and dy corresponding to the outputs
of MO-0 and MO-1). A robot’s heading is determined by nor-
malizing and scaling its motor output values by the maximum
distance a robot can traverse in one iteration, dmax (table III).
Where, dx = dmax(o1 − 0.5), and dy = dmax(o2 − 0.5), and
o1 and o2 are the MO-0 and MO-1 output values, respectively.
To calculate the distance between this robot, and other robots
and blocks in the environment, the squared Euclidean norm,
bounded by a minimum observation distance is used [22].

C. Block Gripper

Each robot is equipped with a gripper to transport blocks
to the construction zone. The gripper motor must be explicitly
activated (MO-2 in figure 3). If no block is held, the robot
grips the closest block within gripper range (table III). If the
robot is already gripping a block, then the block is released.
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Fig. 3. CONE-2 (Left) NEAT (Right) Controllers. NEAT initializes a homogenous controller population subject to complexification. The NEAT controller
illustrated is an example only. Controllers are initially random sensory-motor configurations (right). CONE-2 uses a controller with a fixed topology (left).

D. CONE-2: ANN Controller

CONE-2 robots use a recurrent ANN controller [23], fully
connecting 22 sensory input neurons to 10 hidden layer
neurons to three motor output neurons (figure 3, left). Hidden
and output neurons are sigmoidal [24] units. Sensory input
neurons [SI-19, SI-21] have recurrent connections that accept
the previous activation state of the output layer. At each
simulation iteration of the robot’s lifetime the motor output
with the highest value is the action executed.

1) MO-0, MO-1: Calculate direction of movement from
motor outputs MO-0 (dx) and MO-1 (dy).

2) MO-2: Activate gripper.

E. NEAT: Initial ANN Controller

NEAT robots begin with a minimalist yet functional ANN
controller (figure 3, right), that is subject to NEAT’s complex-
ification process. The initial controller uses four sensory input
neurons fully connected to three motor outputs. To ensure that
NEAT controllers accomplish the collective construction task
with some degree of success, motor outputs are kept the same
as the CONE-2 controller (figure 3, left). At each iteration of
the robot’s lifetime the motor output with the highest value is
the action executed. Initial sensory inputs are one block type A
detection sensor (SI-0) using the robot’s north sensor quadrant
(SQ-0), one block type A demand sensor (SI-1) using all four
sensor quadrants ([SQ-0, SQ-3]), one robot detection sensor
(SI-2) using the robot’s north sensor quadrant (SQ-0), and one
bias node (SI-3). The bias node uses a constant weight value of
1.0. Connection weight values for this topology are randomly
initialized in the range [-1.0, 1.0].

VI. RESULTS AND DISCUSSION

For statistical pair-wise comparisons, unpaired two-sample
t-tests [25] (α = 0.05) were used.

A. Blocks Connected

Figure 4 (left) presents the average number of blocks con-
nected for the fittest CONE-2 and NEAT evolved teams. Fittest
teams were selected from the final generation of 10 runs,
executed for each of 10 construction schemas (table I), and the
average task performance calculated. Statistical comparisons
indicated that for construction schemas 1 to 5, where a low
degree (two robots) or no cooperation was required, NEAT
evolved teams outperformed CONE-2 evolved teams in terms
of the average number of blocks connected.

For construction schema 6 (low degree of cooperation), 8
and 9 (high degree of cooperation, three robots), CONE-2 and
NEAT evolved teams yielded comparable task performances.
This result indicates that both the NEAT and CONE-2 team
size adaptation approaches are equally beneficial for schemas
mandating low and high degrees of cooperation.

However, for construction schemas 7 and 10 (high coopera-
tion), CONE-2 evolved teams yielded a significantly higher
task performance, compared to NEAT evolved teams. This
result indicates that there are cooperative task instances where
CONE-2’s team size adaptation mechanism is most suitable.

B. Team Size

Figure 4 (right) presents the average team size, for the fittest
CONE-2 and NEAT evolved teams. For each construction
schema, the fittest teams were selected from each of the 10
runs, and the average calculated. In figure 4 (right) note that
when no error bars are shown, then team size does not vary.

For schemas 1 to 5, CONE-2 uses only one robot since
most blocks could be connected by one agent. Also, one robot
lifetime (4000 iterations) was not sufficient time to gather
blocks that must be connected cooperatively (table II). Thus,
most of a robot’s lifetime was spent gathering blocks that could
be individually connected, and an average of two blocks were
connected for schemas 1 to 5 by the fittest CONE-2 teams.
However, the fittest NEAT teams connected an average of 9
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Fig. 4. Left: Average number of blocks connected as a structure by the fittest CONE-2 and NEAT evolved teams (for 10 construction schemas). Right:
Average team size of the fittest CONE-2 and NEAT evolved teams (for 10 construction schemas).

to 7 blocks for schemas 1 to 5 (figure 4, left) as a result of
comparatively large team sizes (figure 4, right).

Whereas, a single robot could make at least one connection
in construction schemas 1 to 5, for schemas 6 to 10 at least two
robots were required to connect any blocks. For construction
schema 6, two robots were required to make all connections
(tables I and II). Thus, for schema 6, it was necessary for
CONE-2 to use more robots, compared to schemas 1 through
5 (figure 4, right). However, for schemas 7 to 10, three robots
were required to build all connections (table I). Suitably, for
schemas 7, 8 and 10, CONE-2 used 10 robots (and 9 robots
for schema 9) for the fittest evolved teams.

Results also indicate the fittest NEAT teams, evolved for
each construction schema, used larger team sizes, an average
of 13 robots (figure 4, left). This resulted from NEAT increas-
ing team size according to its speciation mechanism, which
maintained genotype diversity and protected new controllers
from being prematurely removed from the genotype population
(by placing them in a new species) [16]. Increasing team
sizes as a function of NEAT’s speciation mechanism also
resulted in comparatively larger teams. This resulted in a
significantly higher performance (figure 4, left) for schemas
1 to 5 (requiring a low degree of cooperation), since more
robots, on average, gathered and connected more blocks.

A notable result for the fittest CONE-2 and NEAT evolved
teams (for schemas 6 to 10), was that labor was divided
amongst team members. Large team sizes were beneficial in
tasks mandating low to high cooperation since there were
sufficient robots to concurrently gather and connect blocks.

C. Correlating Team Size and Task Performance

Notably for schemas 6 to 10, the fittest CONE-2 evolved
teams were consistently smaller compared to the fittest NEAT
evolved teams, yet CONE-2 teams achieved a comparable or
significantly higher task performance (figure 4).

To test the correlation between team size and the number
of blocks connected, the Pearson product-moment correlation
coefficient [25] was applied. The coefficient was applied to

construction schemas 6 to 10, since in these schemas the fittest
CONE-2 and NEAT evolved teams yielded comparable task
performances. The exception was schemas 7 and 10, where
CONE-2 evolved teams yielded a significantly higher task
performance, compared to the fittest NEAT evolved teams.

Results are presented in table IV. The correlation coefficient
ranges from -1.0 to 1.0. A value of 1.0 implies that blocks
connected increases as robots increase, -1.0 implies that blocks
connected decreases as team size increases, and 0.0 implies no
correlation between blocks connected and team size.

Results (table IV) indicate the correlation for the fittest
NEAT evolved teams ranges from 0.54 to 0.69, highlighting
a high positive correlation between team size and blocks
constructed. However, for the fittest CONE-2 evolved teams
(schemas 6 to 10), there is a very strong positive correlation
between team size and blocks connected (0.99).

This very strong correlation indicates that the fittest CONE-
2 evolved teams only adapt to become as large as required.
That is, CONE-2 evolved teams become just large enough such
that the task is accomplished efficiently. There are a sufficient
number of robots to make all cooperative connections required
by a schema, as well as a sufficient number for maximizing
the number of blocks gathered during a team’s lifetime. In the
case of NEAT, the lower correlation indicates that larger team
sizes were not necessarily beneficial in all schemas.

Comparatively large NEAT team sizes were used for all
construction schemas. Whilst this was beneficial for schemas
requiring no or low cooperation, for schemes requiring high
cooperation, it is theorized that the larger team sizes were,
in some instances, counter productive. That is, more than
three robots would be concurrently attempting to cooperate,
when only two or three were required to connect a block.
Such physical interference between many robots concurrently
attempting to grip a block delayed block connection times as
robots had to try again. This led to lower task performance for
NEAT teams in some schemas, compared to CONE-2 teams.

Thus the key result supports the hypothesis of this study
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TABLE IV
CORRELATIONS BETWEEN NUMBER OF AGENTS PRESENT AND MAXIMUM

BLOCKS CONSTRUCTED PER CONSTRUCTION SCHEMA.

Pearson Correlation Coefficients
Construction Schema NEAT CONE-2
6 0.69 0.99
7 0.64 0.99
8 0.62 0.99
9 0.58 0.99
10 0.54 0.99

(section I-B). That is, that dynamically adapting team size as
function of genotype diversity (NEAT) is comparably effective
to adapting team size according to behavioral success (CONE-
2). The caveat is that when the task requires no or occasional
cooperation, then NEAT evolves more effective teams. How-
ever, when cooperation is always required then NEAT and
CONE-2 evolved teams yield comparable task performances.

However, the mechanisms affecting relationships between
team size and cooperative behavior for a given task and
controller evolution type, are the subject of ongoing research.

VII. CONCLUSIONS

This study’s objective was to elucidate the impact of two
comparative methods for dynamically adapting team size in
a collective construction task that required varying degrees
of cooperation between robots. Team size adaptation was
executed as part of the CONE-2 and NEAT methods (applied
to controller design). CONE-2 team sizes were adapted as
a function of cooperative behavior success. Whereas, NEAT
team sizes were adapted as a function of genotypic (team
behavior encoding) diversity. The comparison was motivated
by the research question of whether a purely genotypic versus
a behavioral mechanism is sufficient for dynamic team adapta-
tion in cooperative tasks (in this study, collective construction).

Results indicated that if the task required cooperation (two
or three robots), the fittest CONE-2 teams yielded comparable
or significantly higher task performances, comparative to the
fittest NEAT teams. However, CONE-2 teams were consis-
tently smaller, indicating the evolution of a greater efficiency
in collective construction task accomplishment.

This study concludes that both genotypic and behavioral ap-
proaches are well suited to dynamically adapt team sizes in the
collective construction task. However, this was a preliminary
study, simply aiming to elucidate a clear benefit of either team
size adaptation approach, with respect to a cooperative task.
The key result was that neither approach demonstrated clear
benefits when cooperation was always required.

Thus as a next step, the benefits of either approach applied
in a general set of collective behavior tasks (those mandating
cooperation), will be examined. Furthermore, the benefits of
combining genotypic and behavioral approaches as a means
to dynamically adapt team sizes to suit a required degree of
cooperation, is the subject of future research.
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